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1. Introduction 

Numerical modeling is a powerful tool to provide better understanding of the modus 

operandi, and the prediction of the earth’s climate system. However, a climate model’s 

usefulness is limited by its crude representations of physical processes, most of which we 

do not understand very well. Since models are only crude approximation of the real 

system, model results must be validated against observations to ensure reliability. The 

scarcity of detailed observations for climate processes with the high spatial and temporal 

resolutions needed for model validation and improvement has been a major impediment 

for improvement in climate model simulation capability and model predictions. 

Climate modeling is an attempt to mimic the evolution of the real climate states, 

which are described by a vast set of long-term global and regional observations in the 

atmosphere, ocean and land, from both in situ and satellite observations. Given that there 

are large uncertainties both in observations and in models, and that even the best model is 

simply a crude approximation of the real world, models and observations should be used 

in a synergistic manner for better understanding and for improved prediction. The 

relationship between observations, climate models, data assimilation, process studies and 

climate predictions are shown schematically in Fig. 1. A climate model consists of a 

dynamical core represented by governing equations of climate state variables, and 

physics modules of varying complexity (see next section for further discussion). The 

physical modules, which appeared in the form of numerical sub-models or 

parameterizations are the drivers of a climate model. The modules are developed and 

continuously improved from knowledge gained from field measurements and related 

process studies. Long-term monitoring refers to observations that are made repeatedly for 

sustained periods to track the evolution of key parameters of the earth system. Because 

models are imperfect, and observations have inherent errors and inadequate coverage, 

neither model nor observations alone will provide a full, comprehensive description of 

the earth’s climate system. For such a description, data assimilation plays a critical role. 

Data assimilation is the numerical process by which observations are assimilated into 

models to produce a complete set of dynamically consistent data set for the entire climate 

system (Kalnay et a1 1996). Climate predictions can be derived either from observations 
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through statistical techniques or from climate models, or combination i.e., statistical- 

dynamical predictions. Data assimilations can provide model with appropriate initial 

states to produce more skilful predictions. 

<Insert Fig. 1> 

In this Chapter, we address the various issues arising from using models for 

detecting, understanding and predicting climate signals. This chapter consists of two 

main parts. The first part is devoted to discussions of climate models as a tool for climate 

studies, including a brief history of the development of climate models, model basics, 

and modeling methodologies used in modeling studies. The second part is an illustration 

of the use of climate models to study the anomalous climate of the Asian monsoon. 

2. A climate model Primer 

2.1 A brief history 

Climate models originate from atmospheric general circulation models (AGCM) 

used in numerical weather forecasting. AGCMs for numerical weather forecasting were 

developed during the 1950-60s. (Charney et al. 1950, Smagorinsky et al., 1965, 

Bengtsson and Simmons 1983). By the early 1970’s most weather services around the 

world have adopted numerical weather predictions model for short-term (days) to 

medium range (weeks) weather forecast. During that period, climate modelers first began 

to explore the use AGCM to study climate anomalies through numerical 

experimentations with various prescribed forcing functions in the atmosphere, land and 

oceans (Manabe and Wetherald 1975, Manabe et a1 1979, Gilchrist A., 1977, 1981). A 

climate model differs from a weather prediction model in that the former has to be 

integrated for extended period of time (multi-years), where the latter is generally 

integrated for a few days at the most. Some of the current climate models to study global 

change have carried out integration up to thousands of simulated years in order to 

determine the reliability of long-term climate signals. Because of requirement for long- 

term integration, climate models are most sensitive to the conservations of mass, energy 

and moisture. Small imbalance in any of the conservation properties can introduce 
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substantial errors that may amplify during the course of the integration to produce severe 

model systematic bias - a problem known as “climate drift”. In contrast, for numerical 

weather prediction, the accuracy of the initial conditions is more critical, and simulations 

generally cover a period too short for the climate drift to be an issue. 

One of the problems facing the climate modeling community in the ~ O ’ S - ~ O ’ S  has 

been the enormous demand on computation resources required to carry out long-term 

climate simulations. As a result, for most early applications, climate models with coarse 

resolutions of order of 250- 500 km, with 2-10 vertical layers, were used and the 

simulation periods limited to a few years (Rowntree 1972, Manabe et al. 198 1 , Shukla 

and Wallace 1983, Sud and Fennessy 1982 and many others). At such coarse resolution, 

many physical processes are grossly under-represented. For this reason, many of the 

early climate model results can only be regarded as mostly exploratory. With the advent 

of computer technology, and more efficiency computation codes, climate models can 

now be run at increasing spatial and temporal resolutions, and with ever more increasing 

complex physics modules. At present, climate models are currently being run with 

resolution higher than 50 km resolution at operational centers such as ECMWF. 

Integrations have been carried out for hundreds of years, such as those used for the IPCC 

climate assessments, and other global change scenarios by many climate modeling groups 

around the world. Currently, the Earth Simulator Project at the Frontier Global Change 

Research Program of Japan is running global climate models at approximately 10 km 

resolution, with over 200 layers in the vertical and for hundred of simulated years. 

However, even with very high-resolution climate models, large uncertainties remain 

with regard to prediction of future climate change, especially in the projection of statistics 

of increased hazards in regional and sub-regional scales due to extreme weather events. 

This shortcoming stems from our very limited understanding of the physics of the real 

climate system, which makes it impossible to include all the details required at the higher 

model resolution. Hence, merely increasing resolution is not a panacea to the problems 

of climate modeling. Our knowledge of physics of the earth system still needs to catch 

up with the advances in computer technology. At a more fundamental level, climate 

signals at the regional and sub-regional scale maybe inherently chaotic and therefore 

unpredictable. Even if the local signals are there, climate information downscaled from 
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global climate models may be masked by large random local fluctuations. To unmask the 

regional and sub-regional scale signals from noise, a number of modeling strategies have 

been adopted (see discussion in Sections 2.3 and 2.4); 

2.2 Elements of a climate model 

A climate model is derived from atmospheric general circulation model, with a 

dynamical core consisting of set of primitive equations for the atmospheric state variables 

such as temperature, pressure, wind and water vapor, which govern the fluid motions, 

thermodynamics and conservation properties for fluid motions of air parcels in the 

troposphere and stratosphere on the rotating earth. The equations are extremely complex 

and can only be solved numerically on a horizontal grid system with different vertical 

levels (See Fig. 2). 

<Insert Fig. 2> 

The AGCM are coupled to components models of the oceans, the land and the 

biosphere. Each component model has its own governing equations for its state variables 

and physical processes. The grid spacing and vertical interval in the atmosphere, ocean 

and the land are often different because of the different fundamental spatial and temporal 

scales of dynamical and physical processes in each component, as shown schematically 

in Fig. 2. The dynamical equations are dnven by physical processes which constitute the 

forcing functions of the climate system. These processes which are represented as 

physics modules, or “parameterization” include absorption and reflection of solar energy, 

emission of terrestrial radiation, aerosols, atmospheric composition and chemistry, latent 

heat release, moisture transport, processes underlying the formation of clouds, rain and 

water vapor, boundary layer processes, surface fluxes of heat and water, ocean salinity, 

temperature and currents and sea ice as well as land surface processes including soil 

moisture, river run-off land vegetation and biomass photosynthetic processes, and many 

others. Given the proper initial and boundary conditions, and external forcing functions, 

i.e., solar radiation, and time history of its atmospheric composition, a climate model can 

be integrated forward in time, starting at some time in the past up to the present to 

simulate past history of the earth’s climate. These climate history simulations are 
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important to ensure that the climate models have the capability to predict future climates. 

Currently, climate models are routinely being run in major research institution to provide 

guidance for seasonal-to-interannual, Le. El Nino and related regional climate, 

predictions. Under the Intergovernmental Policy for Climate Change initiative (IPCC) 

models have also been run for hundreds of simulated years into the future, subject to 

different scenarios of climate change regarding the different rate of increase of carbon 

dioxide in the atmosphere, to provide projection for future climates associated with 

global warming. 

2.3 Experimental design 

In a fully coupled model, all components models are interactive. In principle, once 

the initial and boundary conditions are specified, a climate model can be integrated 

indefinitely into the future, to produce the so-called “nature” or control run. Very often 

to test out a given hypothesis, a climate model has to be re-run with one or more 

components held fixed, the results compared with the control run. Table 1 shows 

possible configurations in which a climate model with three major components i.e. 

atmosphere, ocean and land, can be run to test climate sensitivity to anomalous SST 

forcings due to El Nino, and land surface processes. 

<Insert Table 1> 

In all model sensitivity or climate simulation studies, a control experiment has to be 

defined first. In Table 1, the control experiment (Exp-I) is one in which the SST field is 

prescribed as the climatology, Le., the mean over many years. The climatological SST 

describes the part of variation that is due to forcings external to the climate system, i.e., 

annual cycle of solar radiation. Here, deviations from the climatology are due either to 

internal dynamics within the atmosphere and its interaction with the land surface. In the 

control, the model can be integrated for typically 50 simulated years to obtained a stable 

climatology. In Exp-11, the model is run under identical conditions as in the control, 

except that the SST is obtained from actual observations that cover a 50-year period 

which include several major El Ninos. The anomalies in Exp-I1 will then be computed 
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with respect to the control. The impacts of El Nino SST forcings on global climate can be 

estimated from the anomaly fields of rainfall, temperature and wind, and from 

comparison with the actual observations. Since it is possible that, some of the regional 

impacts over land may be due to land processes feedback induced by the SST. To 

estimate the effect of land-atmosphere interaction, results from Exp-I11 and Exp-I need to 

be analyzed. If the interest is to isolate the natural variability generated by land- 

atmosphere interaction alone, without SST anomaly forcings, Exp-IV should be 

compared to Exp-I. Finally, comparing the fully interactive run Exp-V with Exp-I1 will 

provide insight on the role of coupled ocean-atmosphere processes in producing the 

model climate anomalies. 

An example of a set of experiments to show the effect of ocean forcings vs. land- 

atmosphere interactions on the generation of the Southern Oscillation (SO) is shown in 

Fig. 3 (Lau and Bua 1998). The SO is a east-west seesaw in surface pressure between the 

tropical eastern and the western hemisphere, defined by the sea level pressure difference 

between Darwin and Tahiti. The SO is known to have strong impacts on the Asian 

monsoon climate anomalies. Comparing Exp-I1 ( K O ,  in Fig. 3a) with Exp-I (AL in Fig. 

3c), it can be seen that eastern portion of the seesaw is missing in the latter when the 

anomalous SST forcing is withheld. This suggests that the SO arises primarily from 

anomalous SST forcing. The similarity in the SO in Exp-I11 (A0 in Fig.3b) with Fig. 3a 

implies that land-atmosphere interaction is not important in generating the SO, but may 

have some impact on the signal at higher latitudes. Finally, the negative anomalies over 

the extratropical North Pacific and the North Atlantic in Exp-I11 (Fig.3~) and Exp-IV (A 

in Fig.3d) suggest that there is an intrinsic inverse variation of the tropical and 

extratropical atmospheres even in the absence of any anomalous SST forcings. 

<Insert Fig. 3> 

If the objective has been to examine the impact of a particular land surface anomaly 

such as snow cover as a climate forcing, then it is possible to run a new set of 

experiments in which the land and ocean forcing conditions can be reversed. The design 
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of the numerical experiments using climate models will depend on the objectives of the 

experiments, and on the hypotheses being tested. 

2.4 Ensemble simulations 

Given that atmospheric variations have a large chaotic component, it is possible that 

even forced by a specified lower boundary anomaly such as SST, the atmosphere may 

respond differently depending on the initial conditions (Lorenz 1963). Often, the real 

climatic signals are obscured by the large variability due to internal dynamics of the 

atmosphere. Ensemble forecasts have commonly been used in numerical long-range 

weather forecasts since the late 1980’s to extend the lead time for useful forecasts and to 

evaluate the skill of the forecasts using some measure of the spread among the ensemble 

members (Hoffman and Kalnay 1983, Palmer 1993, Tractor and Kalnay 1993). To 

increase the signal-to-noise ratio and to extend predictability, ensemble approaches are 

increasingly being used in long-term climate simulations and projections (Shukla et al. 

200 1, Kawamura et al. 1998). Typically, an ensemble climate simulation calls for a set of 

control experiments and a set of anomalous experiments. Typically, the control consists 

of at least 5 to 10 members subject to identical climate forcings, e.g. SST, sea ice, or 

present-day CO2 composition etc., but different initial conditions, to ensure the model 

results span the range of possible realizations of the model climate. 

In the anomaly experiments, the ensemble integrations are repeated as in the 

control, but the forcing function is varied in some specified, but identical manner, but 

with different initial conditions. The sensitivity of the forcing function on the climate 

system can then be evaluated based on the variance of the ensemble mean and the spread 

of the ensemble members about the mean. For a climate variable Xv, where the index, i 

(= 1,2.. . .N) is the time index, say at yearly intervals, and the ensemble number, j (=l, 

2.. . n), the ensemble mean 
- 

and the climatological mean are defined by 
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An unbiased estimator of the variance of the noise and of the ensemble is given 

respectively by 

The climate forced variance ad the total variance is obtained respectively as 

2 
osignal 

Ororal 

The climate signal-to-noise ratio is then defined as S = 7. The statistical significance 

of the signal for a given ensemble climate experiment can then be tested using the F-test 

(Von Storch and Zwiers 1999). The larger the ratio, the more likely is that the signal is 

detectable in the real world. 

In most applications, the ensemble mean is computed with equal weights for each 

ensemble members. In more recent applications, when the ensemble comprises not only 

outputs from the same models with different initial conditions, but also different models, 

it may be necessary to assign different weights to each model ensemble members. In the 

so-called multi-ensemble super-ensemble approach, weights for each model variable and 

for each model grid are assigned based on past model performance (Krishnamurti et a1 

2000, Stefanova et a1 2002). In this way, models with strong biased tend to be weighted 

less than those with less biased. The super-ensemble approach has produced remarkable 

improvement in short-term weather forecasting and is promising as a tool in multi-model 

climate projections. 

2.5 Climate Downscaling 

To produce multiple realizations of climate variability and to obtain robust 

statistics, climate models have to be run at the fully coupled ocean-atmosphere-land 
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mode for many simulated years. For seasonal-to-interannual time scales, typically 40-50 

simulated years are need. For decadal scales and climate change scenarios, several 

hundred or even thousands of simulated years have to be carried (cf. IPCC reports). 

Because of the enormous computation resources required for such long-term 

integrations, coupled models are typically run at the low-resolution mode to capture only 

the slow physics of the system, which are deemed to be important for long-term climate 

change. As a result, regional and sub-regional scale processes are unresolved. To obtain 

regional and local climate information from the long-term integrations, climate 

downscaling is necessary 

<Insert Fig. 4> 

Climate downscaling is the procedure by which climate signals at the scales of 

GCM grid size are translated into regional and subregional scales, which are unresolved 

by GCMs (Giorgi and Mearns 1991, Hewitson and Crane 1996). Downscaling is usually 

applied to a pre-selected region, in which regional climate and/or water resource 

assessment need to be estimated. As shown in Fig. 4, downscaling may take place in 

single or multiple stages. At present, there are four basic approaches: statistical, nested 

models, time-sliced method and variable-grid GCM. In the statistical approach, cross- 

scale relationships, known as “transfer functions” are first derived from large scale 

observational and local-scale data, and checked for consistency with the synoptic scale 

forcings of the GCM. For a given climate scenario provided by the low resolution GCM 

(typically with horizontal resolution of 250-500 km), the transfer functions are used to 

generate the statistics from global GCM outputs to regional scales. This approach is 

limited by the amount of available global and regional data required for robust statistics, 

and the possible inconsistency between model and observational data. It has the clear 

advantage of computational ease. In the nested regional model approach, the large scale 

forcing functions derived from the GCM are used as laterally boundary conditions to 

drive a regional climate model (with typical resolution of 20-50 km) applied to a specific 

geographic region usually of continental to sub-continental scale, and for chosen time 

period of interest. This time period may be related to the occurrence of a devasting 
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drought or flood in a certain region, and one wants to see what are the causes, and if they 

are related to the underlying large scale climate forcings or to local feedback processes. 

Multiple nesting grids, with increasing resolutions are sometimes used to zoom in on a 

sub-region to resolve even smaller scale features. The nested regional models may have 

numerical instabilities at the lateral boundaries, so that appropriate buffer zones have to 

be designed (Georgi and Mearns 1991). 

Alternatively, to avoid the lateral boundary problems, a time-sliced approach is 

used, by re-running the atmospheric component of the coupled GCM, at a higher spatial 

resolution and for a shorter time period, using the large-scale lower boundary forcings, 

such as sea surface temperature, from the coupled model. This approach has the 

disadvantage of “wasting” valuable computational resources outside the region of 

interests. More recently, a new strategy has been developed to use GCM’s with variable 

resolution, or so-called stretched or “telescoping grids” in which the GCM can zoom in 

on a specific region, with high resolution to resolve local features, while keeping the 

computations elsewhere at the coarse resolution (Fox-Rabinovitz et al. 200 1). This 

approach can achieve considerable savings in computation resources, while achieving the 

desired higher spatial resolution in the region of interests. The variable-grid GC requires 

the re-design of the model numerics, as well as the physical parameterizations to maintain 

dynamical consistency between the regions with high and low resolutions. 

Depending on the space-time resolutions, outputs from the regional models can be 

used for climate assessments, and for water resource managements. For applications to 

river-basin, catchment scales, further downscaling may be needed (Lattenmaier et al. 

1999). For that purpose, outputs from the regional climate models are used to drive 

macro-scale lhydrology model (4 km resolution) to provide information such as stream- 

flow, surface runoff, subsurface water storage, needed for management of irrigation, 

flood control, hydropower production, municipal and industrial supply, navigation and 

recreation. 

2.6 Model Intercomparison and Validation 

Given the large uncertainties in GCMs, it is clear that results from a single model 

cannot be interpreted too literally and that an estimate of the model reliability has to be 
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included. This consideration has led to the Atmospheric Model Intercomparison Project 

(AMIP) which was initiated in 1989 under the auspices of the World Climate Research 

Program (WCRP) with the aim to systematically validate, diagnose and intercompare the 

performance of AGCM in simulated various aspects of the climate system (Gates et al. 

1992, 1999). During AMIP-I, over 30 AGCMs around the world were organized to carry 

out simulation of the evolution of the earth climate from 1979-88, subject to identical 

prescribed observed monthly sea surface temperature, sea ice, COz concentration and 

solar constant. A large number of model output variables are archived and standardized 

and made available to the scientific community. Thanks to AMIP climate model users 

have gained a better appreciation of what are the strengths and weaknesses of climate 

model. More important, AMIP allows modelers to learn more about their own model 

from having independent examination of their own model outputs in comparison with 

other models. It is the driving force behind many efforts in model improvement in 

research institutions. Moreover, AMIP results have shown that even if individual model 

does not perform well, the ensemble means of all models can do a better job than 

individual models in simulating the evolution of climate. This is because model errors 

tend to cancel out in large model ensemble, so that the signal-to-noise ratio can be 

increased. The use of super-ensemble techniques (Krishnamurti et a1 2000), whereby 

statistical weights are assigned to each model variables, at each grid point, hold promise 

for more reliable simulations, and climate projections on regional scales. Following on 

the success of AMIP-I, an expanded AMIP-I1 is now underway to include a wider range 

of variability, to accelerate model physics improvement and to improve the infrastructure 

for model diagnostics, validation and experimentation. At present there have been 

various model intercomparion projects (MIPS), tailored to various modeling communities 

have emerged in recent years. This included Coupled Model Intercomparison Project 

(CMIP) , the Seasonal Model Intercomparion Project (SMIP), Project of Intercomparison 

of Land Parameterization Schemes (PILPS), the Paleoclimate Model Intercomparison 

Project (PMIP), and many others. 
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3. Modeling the Asian Monsoon Climate 

The Asian monsoon (AM), encompasses the vast regions spanning the Indian 

subcontinent, Southeast Asia and East Asia, surrounded by the Indian Ocean and the 

western Pacific Ocean. It is home to more than half of the world’s population. The 

socio-economic infrastructure of the mostly agrarian societies in the AM region has been 

built, in large part, on the basis of a highly reproducible annual cycle of rainfall. 

Agriculture, drinking water, health, energy generation, and more generally the livelihood 

and well being of this vast human population all depend on monsoon rains. Imbedded in 

the large-scale monsoon circulation are powerful rain-producing weather systems, known 

as monsoon depressions. An anomaly of the AM in the form of a slight shifting of the 

monsoon rain system will cause major flooding in one place and drought in another. 

Droughts and floods are the major cause extensive destruction of the ecosystem, property 

damage, collapse of regional economies and loss of human life in the AM region. 

While drought can cause long-term crippling effects on a country or a region, a 

single season of flooding can be devastating. For example, the wide spread monsoon 

flood over central and East Asia during the summer of 1998 was responsible for the loss 

of over 3000 human lives, damaged more than 30 million acres of farmland, and ruined 

over 11 million acres of crops. In all, the flooding inflicted an economic loss totaling 

over $12 billion US dollars to China, and brought the country’s economy to its knees. 

Since much of world’s productivity rely on the natural, economic an human resources 

residing within the thriving economies of the AM region, our ability to predict the 

interannual changes in monsoon circulation and rainfall is a critical requirement for the 

sustainable development of not only of the AM region, but of the world. 

Understanding, modeling and predicting monsoons is also of great importance to 

the projections of future climate change due to the increase in the concentration of the 

greenhouse gases. The AAM region is one of a few places in the world for which nearly 

all climate models predict increased rainfall in association with global warming. 

Furthermore, it has been observed that the SST warming trend during the past 20 years 

has been the largest in the tropical oceans, especially in the Indian Ocean. Increased 

convection in the Indo-Pacific region associated with the warming of the Indian Ocean 

may be linked to long-term climate change in the North Atlantic (Hoerling et al. 2001 a, 
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b). Therefore an understanding of the possible effects of a warmer Indian Ocean on the 

AM is essential to understand the regional and global effects that may stem from global 

warming. 

There is a large body of observational and modeling research that suggest strong 

interaction between the El Nino Southern Oscillation (ENSO) and the AM. The ENSO 

and AM cycles mutually affect each other. While neither ENSO nor the monsoon own 

their origin and existence to the other, there is clear evidence that their variations are 

affected by interactions between them (Kirtman and Shukla 2000; Lau and Wu 2001). 

Most intriguing is the recent observation of a dramatic drop in the relationship between 

Indian monsoon rainfall and ENSO in the last two decades. It has been hypothesized that 

the drop in the correlation between Indian monsoon rainfall and ENSO may be related to 

a shift of the Walker circulation, or temperature changes over Eurasia due to global 

warming, or the interaction of the monsoon with North Atlantic oscillations (Kumar et al. 

1999; Chang et a1 2001). Appropriately designed modeling experiments will shed light 

on the possible dynamical mechanism underlying these observations, and hypotheses. 

3.1 Modeling the mean climate 

The prediction of monsoon rainfall using dynamical models has been a major 

challenge for the climate research community in general, and the climate modeling 

community in particular. While it has been generally recognized that the mean monsoon 

system is highly stable and predictable (in the sense of a highly reproducible annual 

cycle), state-of-the-art climate models have been singularly unsuccessful in predicting the 

fluctuations about the mean annual cycle. 

<Insert Table 2> 

Because of the complex physical processes involved, interannual variability of the 

AM is generally only poorly simulated by climate models (Gadgil and Sajani 1998, 

Sperber and Palmer 1996). In the following, we discuss results of the WCRP/CLIVAR 

Monsoon Model Inter-comparison Project (MMIP). In MMIP, 10 international modeling 

groups collaborated in carrying out ensemble integrations for a two-year period to assess 

the ability of climate models to simulate the impacts of the 1997-98 El Nino on AM 
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anomalies (Kang et al. 2002). See Table 2 for a brief description of the individul model 

characteristics. Each model ensemble consists of 10 members, and each member is 

subject to the same lower boundary forcings from SST and sea-ice, but with different 

initial conditions. While the ensemble mean rainfall distribution is broadly similar to the 

observed (Fig. 5a and b), the difference between the model mean and the observed is 

quite large over the AM region, as well as the eastern equatorial Pacific and central 

America. Compared to the observations, the model mean tends to overestimate the 

rainfall over the land and underestimate over the adjacent oceanic regions. In addition, 

the model random noise, as measured by the deviations from the model mean is also 

largest in the AAM regions. In some AAM regions, the model mean bias (Fig.5~) and 

the random errors (Fig. 5d) are as large as, or larger than the mean rainfall (Fig. 5b). The 

MMIP results show that modeling the mean climate and its annual variation correctly is a 

prerequisite for improving simulations and predictions of climate variability and global 

change. 

<Insert Fig. 5> 

3.2 Pattern correlations 

The performance of models can be evaluated against the similarity of the model 

rainfall patterns to the observed by the pattern correlation (P,,) and the root-mean-square 

ratio (Rms) defined by: . 

where X is a model variable, and 0 is the corresponding observation. The summation is 

over the spatial coordinate r, over the chosen domain, the overbar represents the spatial 

average, and s is the spatial standard deviation. P,, and Rms have been computed for 

each ensemble member, for each model and for different seasons. The closer P,, and 

R,, to unity, the better is the model performance. 

Fig. 6a and 6b 

model as bar charts, 

show the model ensemble mean values of P,, and R,, for each 

for. December-January-February (DJF) and June-July-August (JJA) 
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for two years, over the Indo-Pacific region 30" S-30" N, 60" E-90" W). The standard 

deviation of P, and RmS for each model and for each season is indicated by the vertical 

lines inside the bars. The all-model ensemble mean is show in the far right column. 

From Fig. 6. The performance of individual models can be compared with the others and 

to the all-model ensemble mean. It can be seen that the mean P,, for individual model 

ranges from 0.2 to 0.8 (Fig.6a). The correlations seem to be higher during the boreal 

winter compared to the boreal summer, indicating that the models tend to capture the 

physics of the wintertime rainfall and circulation regimes better than that for the summer. 

All models seem to have a higher correlation for DJF 1998, when the El Nino signal is at 

a peak, suggesting that all models are responsive to the warm phase of the El Nino. If the 

eastern portion of the domain (east of the dateline) is excluded in the pattern correlation 

calculation, P, reduce dramatically (not shown), indicating that most of the good 

correlation is contributed by the rainfall directly responding to the El Nino SST over the 

central and eastern Pacific. The ensemble mean P,, for each model tends to be higher 

than most individual ensemble member. Similarly, P,, for the model mean (columns to 

the extreme right) are generally among the top tier of the better performing models. The 

picture is quite similar for R,,,. (Fig.6b). Here, about half of the models have RmS 

greater than 1.0, and about half less than 1.0. The rms ratio for the individual member 

(whose range is indicated by the vertical line) tend to be larger than the model mean. 

This is because the model mean tends to smooth out the spatial features. The all-model 

R,, is less than one, suggesting the models collectively underestimate the observed 

variability of the rainfall anomalies in the Indo-Pacific region. This is expected, because 

the all-model mean is derived from a large number (in this case, for 10 models and 10 

member per ensemble, 10x10 =loo) of model realizations, while the observation is just a 

one-time realization of the real system. In all, the multi-model ensemble mean provides 

simulation with more reliability and skill comparable to the top performing models. 

Other more sophisticated ensemble means, such as the super-ensemble procedure, can 

produce simulations with skills that exceed all the individual models (Krishnrnurti et a1 

2000). 

<Insert Fig.6> 
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Another important finding of MMIP, is that models which can simulate a realistic 

climatology, generally have better skill in simulating interannual variability. Fig. 7a 

shows scatter plots of the climatological pattern correlation vs. the anomaly pattern 

correlation of rainfall of the models with respect to observations over the Indo-Pacific 

region. Fig.7b show the same, but for Rms. The climatological quantity is a measure of 

how good the models are in simulating the annual cycle, and the anomaly, how good the 

model simulate interannual variability. Prediction skills are based on the ability of the 

models to simulate the interannual anomalies above and beyond those provided by the 

climatology. The positive slope of the regression lines in Fig.7a and 7b suggest that a 

good simulation of climatology generally imply a good simulation of the interannual 

anomaly. A model that has a good climatology is an indication that the physical and 

dynamical processes are well represented, and therefore provides some assurance that the 

model may be used for anomaly climate predictions on interannual or longer time scales. 

<Insert Fig. 7> 

3.3 Response to 1997-98 ENS0 

Intercomparison of the simulations of the impact of the 1997-98 El Nino indicates 

that AGCMs generally simulate reasonably well the eastward shift of the Walker 

circulation (see discussion in Section 2.3) associated with the anomalous warm SST of 

the central and eastern Pacific (Ju and Slingo 1995, Lau and Nath 2000). Figure 8 shows 

a comparison of the observed and the simulated model mean velocity potential difference 

(JJA 1997 minus JJA 1998) at 200 mb. Here, the positive contours indicate anomalous 

large scale ascent over the central and eastern Pacific, and the negative contours 

anomalous descent over the Indian Ocean. However, the difference map between the 

model mean and observation (Fig. 8c), indicates that large errors are found in the Asian 

monsoon region, with the model over-estimating the anomalous sinking motion over the 

maritime continent and the rising motion over the South China and East China Seas. This 

may be interpreted as the AGCM’s inability to model the regional anomalous induced by 

the Walker circulation (Soman and Slingo 1997, Lau and Wu 2001). The models tend to 
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disagree most among themselves over the Indian Ocean and the tropical western Pacific 

(Fig. 8d). 

<Insert Fig. 8 > 

Many modeling studies have been conducted to unravel the causes of the record 

summer monsoon flooding over central East Asia (Shen et al. 2001, Wang et a1 2000). 

Fig. 9 shows the ensemble mean of the rainfall and 850 mb wind anomalies (1998 minus 

1997) for JJA and for each model participating in the CLNAR MMIP. For comparison, 

the observation is shown in the bottom right panel labeled CMAP. The observation 

shows a zonally oriented rainfall anomaly pattern with reduced rainfall over the tropical 

western Pacific, and Indo-China along 1 O'N, increased rainfall over the maritime 

continent /equatorial eastern Indian Ocean, and the subtropics between 30 - 40%. The 

regions with rainfall increase are located on the northern and southern flank of a 

subtropical anticyclone, which is very pronounced during JJA 1998. The former is 

related to the Mei-yu rainbelt of East Asia and the latter to the development of the 

Intertropical Convergence Zone (ITCZ) over the eastern Indian Ocean and the MC. Both 

features were enhanced during JJA 1998. Anomalous low-level westerlies found along 

10" N fiom the centrallwestern Pacific across Indo-China to the Bay of Bengal and India. 

Near Japan and the northwestern Pacific, the large-scale circulation shows wave-like 

features, associated with fluctuation of the subtropical jetstream (Lau and Weng 2002). 

During JJA 1997, the Walker Circulation shifts eastward in respond to the El Nino SST 

forcing, inducing strong downward motion over the maritime continent and suppressing 

the ITCZ. The anomalous anticyclone is the cause of the major flooding over the Yangtze 

River Valley during JJA 1998 (Lau and Wu 2001, Lau and Weng 2001, Shen et a1 2001). 

The establishment of the anticyclone is related to descending motion associated with the 

eastward shift of the Walker circulation, and also to amplification by local air-sea 

interaction. 

<Insert Fig. 9> 

18 



The model ability to simulate the aforementioned features are generally not very 

impressive. While most models show the correct sign of the large-scale response in the 

AM region, most models, except perhaps SNU, fail to simulate the observed zonally 

oriented rainfall structure. It is clear from the results shown that the simulation of the 

East Asian monsoon rainfall anomalies are critically dependent on the anomalous 

anticyclone, which governs the moisture available for precipitation. Because the 

anticyclone is generated by large-scale dynamics, its broad feature is represented in most 

models. However, it is the simulation of the exact location and magnitude of the 

anticyclone that is required in order for climate models to simulate the regional AM 

rainfall anomalies, and hence the severe floods and droughts in the AM region. The use 

of higher resolution climate models, or the use of downscaling methodologies is required. 

The performance of AGCMs to simulate the 1997-98 rainfall anomalies can also be 

evaluated from examination of the distribution of model climate states represented as two 

dimensional scatter plots along axes representing key climate variables. Shown in Fig. 

10 are model rainfall anomalies averaged over selected domains (labeled by latitude- 

longitude boundaries in Fig. lo), plotted against the Southern Oscillation Index (SOI). 

The domains are for the AM region as a whole, and for its components parts over the 

maritime continent (MC), the South Asian Monsoon (SAM) and the South East Asian 

Monsoon (SEAM). Each data point represents one ensemble member of each model. 

The heavy shaded symbols represent the observed states. It can be seen that the models 

are quite responsive to the El Nino signal, in that there is a clear separation of model 

states between 1997 and 1998 along the SO1 axis in all panels. Indeed, the models tend to 

overestimate the east-west seesaw, as evident in the larger spread along the SO1 axis 

compared to the observations. For the AM region as a whole (Fig.lOa), a reduction in 

rainfall during 1997 compared to 1998 can be discerned. This reduction is mainly 

contributed by the rainfall anomalies over MC, which is situated at the descending branch 

of the Walker circulation. For the SAM and SEAM region, the large clusters of model 

states for 1997 and 1998, and the lack of obvious shift of the center of gravity of the 

clouds in the y-axis during these two years suggests that there are large rainfall 

variability, but they have no significant climate impact from the El Nino in these two 

monsoon subregions, in agreement with observations. The observed AM anomalies 
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represents only a single realization drawn from an intrinsic distribution effected by SST 

forcings identical to the 1997-98 El Nino. To the extent that the model can mimic the 

real climate, the cluster of model climate states around the observation provides a 

measure of that intrinsic distribution. AMIP results suggest that models that simulate 

well the seasonal cycle is a prerequisite for better simulation of the interannual variability 

of AM rainfall. 

<Insert Fig. 10> 

3.4 Intraseasonal variability 

One of the key characteristics of the AM is the presence of a rich spectrum of 

subseasonal scale variability, generally referred to as intraseasonal variability. These 

include quasi-periodic oscillations from 30-60 days, 10-20 days and transient waves of 3- 

5 days. The intraseasonal variability are generated by internal atmospheric dynamics but 

strongly modified by sea surface temperature and land surface processes. They are 

responsible for the modulation of monsoon onsets, breaks and evolution regionally. 

Intraseasonal variability, especially those in the lower frequency end of the spectrum, can 

have strong impacts on the seasonal mean monsoon climate. Over different regions, they 

can either strengthen or weaken the direct influence by ENS0 on the AM. It has been 

suggested that, the near normal monsoon rainfall over India during the strong El Nifio of 

1997-98 may be due to the effects of pronounced intraseasonal variability, which brought 

copious rainfall to many parts of India, in spite of the tendency of ENS0 to weaken the 

AAM (see discussion in previous section). 

Modeling intraseasonal variability of the AM is a very challenging problem. 

Models generally fail to capture the phase locking between intraseasonal variability and 

the seasonal cycle. For example, at the longitude of the Bay of Bengal (Fig. l l ) ,  the 

ensemble mean of MMIP models depicts an over-simplified picture of the monsoon 

evolution with a sudden onset of the South Asia monsoon near the middle of May and 

beginning of June. However the models fail to reproduce the complex intraseasonal 

structure associated with the evolution of the monsoon rain-belt as observed. During 

JJA, the models show a much more quiescent atmosphere over the oceanic regions near 

the equator compared to the observed. Similarly, at 130' E, the models seem to capture 
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the broad seasonal evolution, but they fail to capture the climatological intraseasonal 

variability during JJA which is very prominent in the observation. In particular, the 

models fail to reproduce the development of the monsoon rainbelt associated with the 

Mei-yu fi-ont from 20" N to 40" N. The Mei-yu front is the major climate features that 

dominate the climate of continental East Asia, Korea and Japan (Lau and Li 1984). The 

absence of such features in the coarse resolution climate models is an endemic problem in 

almost all AGCMs (Lau et a1 1996, Liang et a1 2001) in indicate that downscaling 

approaches may be needed to capture this unique feature of the East Asian monsoon. 

<Insert Fig. 11> 

3.5 Land-atmosphere feedback 

Recent modeling studies have shown that land-atmosphere processes can affect 

monsoon and monsoon-ENS0 relationship by altering the energy and water cycles within 

the AM regions, through surface heat fluxes and hydrologic feedback mechanisms. Lau 

and Bua (1998) carried out a series of numerical experiments using a NASA global 

climate model, similar to those described in Section 2.3. Their results suggest an 

atmosphere-ocean-land feedback scenario as illustrated in Fig. 12. If the soil moisture 

content of the Asiatic land mass is abnormally high during the start of a monsoon season, 

land surface evaporation will be increased. This will lead to increased moistening of the 

atmospheric boundary layer, more unstable air masses and hence more convection and 

rainfall, resulting in a positive feedback leading to further moistening of the land region. 

However, the cloudy sky condition stemming from enhanced convection will shield off 

and reduce solar radiation from reaching the land surface, causing the land to cool. As 

the land mass cools off, the resulting decreased land-sea thermal contrast can only 

support a weaker large-scale monsoon circulation, with reduced monsoon rainfall, thus 

producing a negative feedback, which halts further increase in soil moisture. These 

feedback mechanisms are dependent not only on local processes but also on the remote 

forcing such as forced large scale descent or ascent over the AM region by ENSO. The 

large-scale vertical motions provide a strong control on atmospheric stability and 

initiation of convection. Even though the ENS0 remote forcing has relatively slow time 
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scales, its impact may be sufficient to tip the delicate balance of the aforementioned local 

feedback processes causing either the amplification of a given climate state or transition 

from one state to the other. The hypothesis needs to be verified with additional data, 

analyses and further experimentations with other climate models with detailed land 

surface processes. 

<Insert Fig. 12> 

In summary, studies up to now have shown that a large portion of the predictable 

part of interannual variability of the monsoon rainfall is forced by the slowly varying 

boundary conditions at the earth's surface. However, no climate model has been able to 

replicate even the simplest empirical relationship between the SST anomalies and 

monsoon rainfall anomalies. It is unclear at this stage whether the inability of current 

models to simulate and predict monsoon rainfall is due to model deficiencies or due to 

intrinsic lack of predictability of the monsoon. It is likely that both play important roles. 

5. Future Challenges 

In this Chapter, we have discussed the importance of modeling in providing better 

understanding of causes of regional climate anomalies, and in predicting future climate 

evolution, using the AM climate as a specific example. Given that models will be 

increasingly used for climate predictions of all time scales, it is important to keep in mind 

that large uncertainties exists and that not all aspects of model predictions have the same 

degree of reliability. The challenge is to how to reduce these model uncertainties, and to 

make climate forecast more reliable and useful. The following are suggested steps that 

should be taken to move in that direction. Because each of the steps involve complex 

procedures and organized efforts, successfully implement these steps will take years of 

sustained efforts by the science community. 

Usefiner spatial and temporal resolution. As stated previously, one of major 

uncertainties in climate models stems from the lack of spatial and temporal 

resolution, as a result regional to sub-regional scale features are not well 
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represented. Yet it is these sub-regional features and short-term events that are 

causes the most socio-economic damages. With the advances in computational 

power, it is now possible to run climate models with high resolution globally for 

extended periods. For example the European Center for Medium Range 

Forecasting is running its operational model for medium and long-range 

weather predictions of the order of 50 km resolution, and the Frontier Climate 

Change Research Program of Japan is running the Earth Simulator at 10-20 km 

resolutions. One of the most obvious improvements in going to higher 

resolution is the better simulation of orographic rain, especially in regions of 

complex topography. Even with the increased resolution, for some applications 

such as catchment scale water resource management, resolution of less than a 

few kilometers may be required. In this respect, the downscaling techniques 

using regional climate models and macroscale hydrology models will be 

important. 

Improve model physics. While increasing resolution will reduced model 

uncertainty and improve the geophysical fluid dynamic aspects of climate 

models, the major culprit of model uncertainty still lie in the inadequacy of 

representation of physical processes, which determine the forcing functions of 

the model. If a model is driven by erroneous forcing functions, no matter how 

good the flow fields can be simulated, it will not give the right answers. 

Improvement of physical representation in models is therefore paramount and 

should be focused on processes which are key drivers of the earth’s hydrologic 

cycles. These include cumulus heating in the tropics, aerosol-cloud-radiative 

processes, fluxes at the air-sea and air-land interfaces, land surface and 

vegetation processes. Improving model physics is an extremely difficult and 

tedious endeavor, because the physics of climate is very complex and inter- 

woven. Improving a physical process in a stand-alone model, does not 

necessarily mean that it will give better performance in a coupled model. 

Likewise, improving one part of the system does not always lead to 

improvement of other parts. Hence the process of improving model physics can 
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be very difficult and tedious, calling for multiple tests and validation with 

observations under a variety of conditions. Substantial improvements are not 

likely to come in the short-term, but sustained organized efforts by the scientific 

community are required. In some sense, we have exhausted much of the reliable 

information that can be derived from current climate models. Unless model 

physic improvement is taken seriously, model uncertainties will remain 

unacceptably large. 

Improve datafor model validation One of the major stumbling block for model 

improvement is the lack of detailed data suitable for model validation and 

improvement. Given the vast amount of data obtained from ground-base and 

satellite atmospheric and oceanic observations, field campaigns and special 

measurement platform, it may seem a bit puzzling that there is still a shortage of 

data for model validation. The reason is that for model physics improvement 

very specialized data with high spatial and temporal resolutions, directly 

relevant to the model parameters, are required. These data are often not direct 

observables in the climate system, but derived quantities from the observables 

and therefore have large uncertainties themselves. Often, they required special 

intensive observation platforms, which for practical purpose can only be carried 

out over a short period in field campaigns. To be sure, besides new data from 

future field campaigns, there are data that can be extracted from the vast 

satellite and operational historical data base, as well as various enhanced 

observational sites to be used for model validation and physics improvement. 

There is a need for coordinating and extracting global, regional and site data 

from various sources, and making them available for model improvement and 

prediction. 

Model prediction applications Climate forecasts both short and long-term 

have tremendous potential benefits for society. Accurate seasonal forecasts of 

winter storm, summer drought and flood, hurricane frequencies will result in 

substantial savings and in reduction of damaged properties and loss of human 
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life. Skilful prediction of El Nino using coupled ocean-atmosphere models have 

resulted in limiting its adverse impacts on food production and fisheries by 

advanced planning, and implementation of mitigating measures in many regions 

around the world. To realize the full benefit of climate forecasts, climate 

models should be coupled with cost and risk models for agriculture, food 

production, water resource management and other societal applications, to 

reduce vulnerabilities to natural hazards and climate change. 
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Table 1 Possible experimental designs for climate sensitivity 
experiments. The letters C and 0 denotes climatology and observation 
respectively. A check mark indicates an interactive component 

Exp-I (control) 

EXP-I1 

I Atmosphere I Ocean 

.I C .I 

.I 0 .I 

I Land 

EXP -V d .I .I 

I Exp-I11 l o  I C  
I C  EXP -1V 
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Figure Captions 

Fig. 1 Synergistic application of observations and models for climate diagnostic and 

prediction studies. 

Fig. 2 An illustration of the model grid and basic physical processes in a climate model, 

Fig. 3 

Fig.4 

Fig. 5 

Fig. 6 

consisting of the atmosphere, ocean and land. (Reproduced from McGuffie and 

Henderson-Sellers (200 1) by permission of the International J. of Climatology). 

Sea-level pressure patterns showing the spatial structure of the Southern 

Oscillation for (a) ALO, (b) AO, (c) AL and (d) A. See text for definition of 

symbols. Contour interval is 1 mb (adopted fiom Lau and Bua 1998). 

Downscaling global climate signals for regional and sub-regional scale 

applications 

(a) Pattern correlation coefficient between the simulated and observed 

precipitation anomalies for each model and each season over the Monsoon- 

ENS0 region (30" S-30%, 6O"E-9O0W). (b) Root-mean-square (rms) of the 

simulated precipitation anomalies over the Monsoon-ENS0 region, normalized 

by the observed rms. The vertical line in the bar indicates the range of the 

correlation and rms values of individual run, and the black square represents the 

ensemble mean. (Adopted fiom Kang et al. 2000). 

Pattern correlation of ensemble anomalies of each model over the ENSO- 

Monsoon domain (y-axis) vs. that of the corresponding climatology (x-axis) for 

the 97-summer (open circle) and 97-98 winter (dark circle) seasons. @) As in (a), 

except for the normalized rms. 

Fig. 7. Spatial distribution of climatological rainfall for (a) observations from 1979- 

1998. (b) ensemble mean of all models, (c) Model minus Observations 

differences, and (d) rms deviations from all-model mean. 

Fig. 8 Anomalous velocity potential (JJA 1998 minus JJA 1997) for (a) Observed, (b) 

all-model mean and (c) Model minus observed and (d) standard deviation from 

all model-mean. 

Fig. 9 Scatter plots showing the distribution of anomalous precipitation vs. the Southern 

Oscillation Index for (a) the entire AA monsoon region, (b) the Maritime 
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Continent, (c) the South Asian monsoon region, and (d) the Southeast Asian 

monsoon region. The latitude-longitude boundary of each domain is indicated. 

Unit for precipitation is m d d a y  and for SO1 is in mb. 

Fig. 10 Rainfall (mm/day) and 850 mb wind (m/s) differences (JJA 1998 minus JJA 

1997) for individual models participating in CLNAR MMIP. The observation is 

shown in the right land bottom panel. See Table 2, for model acronyms and 

descriptions. 

Fig. 1 1 Time-latitude cross section of climatological pentad-mean precipitation. (a) and 

(b) are for the model composite and the CMAP observations along the longitude 

of 90E. (c) and (d) are for longitude 130' E. (Adopted from Kang et al. 2000) 

Fig. 12 Schematic showing possible land-atmosphere feedback mechanisms associated 

with fluctuations of the water and energy cycles, in leading to extreme floods or 

prolonged drought events in monsoon region. (Adopted from Lau and Bua 

1998) 
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Popular summary 

This is an invited review paper intended to be published as a Chapter in a book 
entitled "The Global Climate System: Patterns, Processes and Teleconnections" 
Cambridge University Press. The author begins with an introduction followed by a 
primer of climate models, including a description of various modeling strategies and 
methodologies used for climate diagnostics and predictability studies. Results from the 
CLIVAR Monsoon Model Intercomparison Project (MMIP) were used to illustrate the 
application of the strategies to modeling the Asian monsoon. It is shown that state-of-the 
art atmospheric GCMs have reasonable capability in simulating the seasonal mean large 
scale monsoon circulation, and response to El Nino. However, most models fail to 
capture the climatological as well as interannual anomalies of regional scale features of 
the Asian monsoon. These include in general over-estimating the intensity and/or 
misplacing the locations of the monsoon convection over the Bay of Bengal, and the 
zones of heavy rainfall near steep topography of the Indian subcontinent, Indonesia, and 
Indo-China and the Philippines. The intensity of convection in the equatorial Indian 
Ocean is generally weaker in models compared to observations. Most important, an 
endemic problem in all models is the weakness and the lack of definition of the Mei-yu 
rainbelt of the East Asia, in particular the part of the Mei-yu rainbelt over the East China 
Sea and southern Japan are under-represented. All models seem to possess certain 
amount of intraseasonal variability, but the monsoon transitions, such as the onset and 
breaks are less defined compared with the observed. Evidences are provided that a better 
simulation of the annual cycle and intraseasonal variability is a pre-requisite for better 
simulation and better prediction of interannual anomalies. 


